19 research outputs found

    Efficient Heuristic for Resource Allocation in Zero-forcing OFDMA-SDMA Systems with Minimum Rate Constraints

    Full text link
    4G wireless access systems require high spectral efficiency to support the ever increasing number of users and data rates for real time applications. Multi-antenna OFDM-SDMA systems can provide the required high spectral efficiency and dynamic usage of the channel, but the resource allocation process becomes extremely complex because of the augmented degrees of freedom. In this paper, we propose two heuristics to solve the resource allocation problem that have very low computational complexity and give performances not far from the optimal. The proposed heuristics select a set of users for each subchannel, but contrary to the reported methods that solve the throughput maximization problem, our heuristics consider the set of real-time (RT) users to ensure that their minimum rate requirements are met. We compare the heuristics' performance against an upper bound and other methods proposed in the literature and find that they give a somewhat lower performance, but support a wider range of minimum rates while reducing the computational complexity. The gap between the objective achieved by the heuristics and the upper bound is not large. In our experiments this gap is 10.7% averaging over all performed numerical evaluations for all system configurations. The increase in the range of the supported minimum rates when compared with a method reported in the literature is 14.6% on average.Comment: 8 figure

    Dual-based bounds for resource allocation in zero-forcing beamforming OFDMA-SDMA systems

    Get PDF
    We consider multi-antenna base stations using orthogonal frequency-division multiple access and space division multiple access techniques to serve single-antenna users. Some users, called real-time users, have minimum rate requirements and must be served in the current time slot while others, called non real-time users, do not have strict timing constraints and are served on a best-effort basis. The resource allocation (RA) problem is to find the assignment of users to subcarriers and the transmit beamforming vectors that maximize the total user rates subject to power and minimum rate constraints. In general, this is a nonlinear and non-convex program and the zero-forcing technique used here makes it integer as well, exact optimal solutions cannot be computed in reasonable time for realistic cases. For this reason, we present a technique to compute both upper and lower bounds and show that these are quite close for some realistic cases. First, we formulate the dual problem whose optimum provides an upper bound to all feasible solutions. We then use a simple method to get a primal-feasible point starting from the dual optimal solution, which is a lower bound on the primal optimal solution. Numerical results for several cases show that the two bounds are close so that the dual method can be used to benchmark any heuristic used to solve this problem. As an example, we provide numerical results showing the performance gap of the well-known weight adjustment method and show that there is considerable room for improvement

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Actas de las V Jornadas ScienCity 2022. Fomento de la Cultura Científica, Tecnológica y de Innovación en Ciudades Inteligentes

    Get PDF
    ScienCity es una actividad que viene siendo continuada desde 2018 con el objetivo de dar a conocer los conocimientos y tecnologías emergentes siendo investigados en las universidades, informar de experiencias, servicios e iniciativas puestas ya en marcha por instituciones y empresas, llegar hasta decisores políticos que podrían crear sinergias, incentivar la creación de ideas y posibilidades de desarrollo conjuntas, implicar y provocar la participación ciudadana, así como gestar una red internacional multidisciplinar de investigadores que garantice la continuación de futuras ediciones. En 2022 se recibieron un total de 48 trabajos repartidos en 25 ponencias y 24 pósteres pertenecientes a 98 autores de 14 instituciones distintas de España, Portugal, Polonia y Países Bajos.Fundación Española para la Ciencia y la Tecnología-Ministerio de Ciencia, Innovación y Universidades; Consejería de la Presidencia, Administración Pública e Interior de la Junta de Andalucía; Estrategia de Política de Investigación y Transferencia de la Universidad de Huelva; Cátedra de Innovación Social de Aguas de Huelva; Cátedra de la Provincia; Grupo de investigación TEP-192 de Control y Robótica; Centro de Investigación en Tecnología, Energía y Sostenibilidad (CITES

    Local fringe frequency estimation in synthetic aperture radar interferograms using a multiband pre-filtering approach

    No full text
    Synthetic aperture radar (SAR) interferometry is a technique for obtaining accurate elevation maps of the Earth from radar images. Local fringe frequency estimates are needed in several stages of the interferometry process. They are used to correct the effect of the topographic slope in the estimation of the interferogram coherence. They are needed to define the frequency center for adaptive band-pass filtering or to model the local phase in slope-correction filtering. Finally, accurate fringe frequency estimates facilitate the phase unwrapping process. In this work, I propose a new algorithm for local fringe frequency estimation in which the SAR interferogram signal is pre-filtered before the local frequency estimation is performed. This allows the use of a simpler and more efficient frequency estimator that operates at the pixel level. The proposed scheme shows advantages over other schemes because it achieves a better spacefrequency resolution and therefore tracks the topographic changes of the scene more accurately. The filters used in this work are modulated Gaussian functions with variable spatial aperture and bandwidth. In this way, the analysis window is adapted to the local characteristics of the signal at all samples. The variable-aperture filters are similar to the variable space-frequency domain filters used in wavelet analysis. I present results for synthetic and real SAR interferograms, as well as the performance of the proposed algorithm. An application of the frequency estimation method is developed for the noise filtering stage. A non-linear phase model is built to locally flatten the phase allowing the averaging of a higher number of samples without significant distortion. Simulations show that this alternative method achieves a better performance than two other reported methods when the interferogram coherence is moderately high. However, the alternative method does not solve the problem of phase discontinuities in the presence of topographically induced residues.Applied Science, Faculty ofElectrical and Computer Engineering, Department ofGraduat
    corecore